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Block 20 cont'd

Much work with mobile robots has been done in the past usini I bh 'isin and

sonar to build maps. or. zivn a map. to suiccessfullY plani an( oxec, ,. t r a ei-teri,

to a goal. The most successful examples of robot iavigation o,'clirrerl in ,raretrullv
engineered environments where the robot was able to acculratelv predict ,xilat it.;
sensory input should be at any point, and correct for drift by coin partig! at,ial
input to the projected input. In unstructured environments however, htl prchlerir
became much harder, and the obvious approaches failed to proui c,. I,,,,, rh 1lt.

The problem is further complicated by the fact that most interesting oii iroruinteir
are not static, but rather are changing continually.

[n this thesis I have attempted to attack the problem from a diifferent an',!O
altogether, using the way people navigate through buildings as insight and inspi-
ration. The goal is to navigate through an office environment 0si 1 only vis11
information gathered from four cameras, whose initial detailed cI.i; ration

not known. placed onboard a mobile robot. The method is insensitive o, ph)Y-ical
changes within the room it is inspecting, such as moving objects. I h,- 'lap i<

built without the use of odonnetrv or trajectorv intezration. which are lrii iiii-

reliable. At the heart of this technique is the development of a "rooth recognizer
which is able to deduce the size and shape of a room in conjunction with a "'ioor
recognizer" which recognizes a potential door by findinz two vertical edges close

enough together. The long term goal of the project described here is for the robot
to build simple maps of its environment, presumed to be a single door f an office
building, and to localize itself within this framework.
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Abstract

Much work with mobile robots has been done in the past using both vision and
sonar to build maps. or. given a map. to successfully plan and execute trajectories
to a zoal. The most successful examples of robot navization occurred in carefully
engineered environments where the robot was able to accurately predict what its
sensory input should be at any point. and correct for drift by comparing actual
input to the projected input. In unstructured environments however, the problem
became much harder. and the obvious approaches failed to produce good rsuir,.
The problem is further complicated by the fact that most interesting environienrt
are not static. but rather are changing continually.

In this thesis I have attempted to attack the problem from a different anile
altogether, using the way people navigate through buildings as insight and inspi-

ration. The goal is to navigate through an office environment using onlvvyial
information gathered from four cameras. whose initial detailed conti_,uratiun 1,
not known. placed onboard a mobile robot. The method is insensitive to physical
changes within the room it is inspecting, such as moving objects.,Jhe map is

built without the use of odometrv or trajectory integration, which are often un-
reliable. At the heart of this technique is the development of a "rootn reconizer"
which is able to deduce the size and shape of a room in conjunction with a "door
recognizer" which recognizes a potential door by finding two vertical edges clos,
enough together. The long term goal of the project described here is for the ro', t
to build simple maps of its environment, presumed to be a single floor of an ,ihe
building. and to localize itself within this framework.
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Chapter 1

Introduction

1.1 The Relationship between Mobile Robots

and Al

What is Al? To some. -kI is the study of how the brain work . arm their research

is guided by this goal - that is. if a simulation seems to work differently than

the brain, as evidenced by psychological observations, then throw it away. To

others. Al is an engineering problem. They are concerned less with what bioloLical

intelligence is and are more concerned with the question of how to simulate it. In

order to simulate biological intelligence. we have to replace the biological goals

with electronic goals and have the behavior o . our -'being- motivated by these

goals. as is a biological creature in reproducing or consuming.

Many traditional Al programs suffer from the fact that their interaction with

the world is limited to that which their creator chooses to input, that which their

creator deems important. and limited moreover in a highly structured way. such

that the information is already" in digested or preproc:ssed form. A program like

this can therefore be criticized on the grounds that what it -knows- was not

learned, but rather was . product of its creator, i.e.. its knowledge is in no way

independent of its creator and therefore is not intelligence, but rather the mere

9 m um nmnnu m mu
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byproducts of a clever program. Intelligence will not be classified as such until such

an artificial creature exhibits behavior which is unpredictable and unanticipated

by its creator: this creature will then be perceived as being intelligent. This

behavior can only be a product of the information at the creature's disposal. and

this information, if not programmed or a consequence of programming, can only be

acquired during the course of the creature's non-deterministic and unforeseeable

interaction with the real world.

Such. then. is one philosophical motivation for mobile robots. Although the

field is far from the point where we can equip a little electronic creature with a few

sensors. let it loose in the real world and expect it to fend for itself intelligently.

making deci ions along the way. one of the goals of the work of the mobile robot

group at MIT is to build robots that will eventually be able to function like this.

1.2 The Goal of Robot Navigation

What, in a word. is robot navigation? When we say that we want a robot to nav-

igate, we generally mean that we want it to be able to master the art of getting

from place to place in a successful fashion. without bumping into things. This

implies an understanding of what a "place" is. be they distinct rooms. or maybe

merely points on a grid. It also requires an understanding of how places are con-

nected to eachother, so that the robot may plan routes. On a more advanced level.

navigation nmay require an understanding of the meaning of places in relation to

specific tasks. For instance, when delivering mail from the mailroom to individual

offices. what is the difference between the the starting point and the destinations

in terms of the Tasks to be performed at each place?

On first glance. the problem of navigation as described above seems quite

straightforward to solve. After all. %,e are dealing with machines whose measure-

ment capabilities are far more pr (ise than those of humans. Why not simply give
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the robot an accurate map of the local environment, a precise odometer. write

one program that performs trajectory integration and another program that finds

free paths between points in the map. and let the robot loose? What makes this

seemingly simply problem difficult? There are several answers to this 4tiestinn.

First of all, any drift in odometry. even the most minute, causes an error in the

calculated location with respect to actual location which is unbounded with time.

Secondly. the problem is further complicated by the fact that most interesting

environments are not static. but are rather changing continually. For a robot to

successfully navigate, it must somehow cope with the unpredictability of an object

disappearing from a place that it was before. or appearing suddenly in front of its

planned path.

The pragmatist will realize that the first approach to the problem wa, rnaive.

and that of course the robot needs to have sensing capabilities. By u~in,. it,

sensors. the robot will have a sensing feedback loop with the environinent. and

this will solve both problems: it will be able to sense actual movement as compared

to assumed movement and will therefore be able to correct its position. and it will

also be able to sense any unanticipated objects in its path and so avoid them.

Much work has been done in this vein. using both vision and sonar to build

maps. or. given a map, to successfully plan and execute trajectories to a goal. The

most successful examples of robot navigation occurred in carefully engineered

environments where the robot was able to accurately predict what its *en orv

input should be at any point, and correct for drift by comparina actual input to

the projected input sha84 . In unstructured environments however, the pribleni

became much harder, and the obvious approaches failed to produce good result,.

Those techniques which have relied on (lead reckoning and trajectory intetZration

have been plagued with the problems of cumulative error Tho79 . and those

techniques which rely on sensory input to model the environment have struggled

with the inability of present sensing techniques to return information reliable
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enough to conclude anything about the environment with certainty. An example

of the extent of noise in typical sensor data is given in DruS7.

1.3 A New Approach to Robot Navigation

In this thesis I hav& attempted to attack the problem from a different angle alto-

gether. using the way people navigate through buildings as insight and inspiration.

People. when sitting in a particular room in an office building. may be able to

tell you approximateiy in what direction another given room is. maybe not. They

can also probably tell you some sequence of rooms they would go through to get

there. but they would not be able to tell you the distance in feet. nor the angles

they would turn after entering any given room on the path. They definitely won t

have a trajectory plan of where to walk to in order to get as fast as possible to

the comfy chair bazed on their model of the room.

The manner in which locations are represented and understood by a navigator

greatly affects its behavior. Two terms are used to characterise two different types

of maps: a metric map is one which contains precise geometric information, such

as absolute locations on an xy grid. and a topological map is one in which distinct

places are represented as nodes in a graph. where two nodes are connected in the

graph when there is such a connection between their corresponding places in the

world. This latter map contains virtually no metric information. Though it is

not known whether or not humans actually carry a topologic map of their local

environment, their behavior suggests that they understand their environment in

topological fashion Lvn60 . whereas all work in robot navigation has used the

metric representation.

The goal of this project is to have a robot build simple maps of its environment

(presumed to be a single floor of an office building) containing the minimal possible

information, where the rooms are represented as nodes connected by paths. The
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robot should also be able to determine its approximate location in this map at all

times. This approach tries to circumvent the problems that arise from dynamic

environments by taking note only of those features of the environment which

never change, that is. the position of the walls. To put this in terminology of

Chatila and Launiond Cha85b (LS5 . the approach attempts to get straight

to the "'topological level" of information without first mapping the "geometric

levelV. thereby avoiding its associated pitfalls. The geometrical information is

no doubt useful for tai obstacle avoidance, and possibly (b room recognition.

but it is not necessary to keep an accurate 3D map to perform these functions

accurately. Obstacle avoidance can be taken care of by a reactive module suited

for this purpose.

In addition. this entire algorithm niakes use of only visual information from

relatively uncalibrated instruments, which in this context mean, that the confi,-

uration of the cameras with respect to the robot and its motion is restricted to a

small range but is not adjusted or known a priori.

1.3.1 Using the Topological Representation

To use rooni as the basic building blocks in a topological map and to move

between thern. a robot nmust be able to recognize both rooms and doors. The

bulk of the technical work done for this thesis consisted of building two modules

to do exactly that. The "'roomfinder" works using rotational vision to find the

perpendicular direction to the walls of the room. and then using stereo vision to

estimate the distance to each wall. For this last stage. the robot looks only at

the junction between the wall and the ceiling, whose location is presumed to be

fairly invariant and which is rarely obstructed. From the distance to each of the

four walls. the dimensions of the room can be calculated. The 'doorfinder" uses

forward motion and single line stereo vision to find two vertical lines, suitably

separated from eachother. through which it tries to lead the robot.
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1.4 Context of the Project

The work described above was motivated by the idea, inherent in the design of

the subsumption architecture. a control miethodolo4y for robo, which combines

individual behaviors, modelled as finite state machines. into an interactina whole.

The characterizing feature of this organization is the absence of a central control-

ling unit to guide the overall behavior of the robot: this allows for modularity in

design and debugging, as well as the potential for parallel implementation. An

example of decomposition of an overall behavior into module', can be found in
B('6 . To date the group has built two robots. Allen and H,'rert. uiin4 this

design as the core. In general. sonar has been used for obstacle avoidance, though

visual algorithms for obstacle avoidance have been studied a, weil. The -group'_-

new robot. Seymour. is presently being designed and built. and i- intended to use

only passive sensing. The work presented here is intended to be integrated into

this most recent robot as a higher level behavior.

1.5 Overview of the Thesis

Chapter 2 presents the theory behind the room indina sensor I have developed.

and derives in detail all the equations used in subsequent chapters. Chapter .,

presents the implementation and results of the theory. and discusses problems

encountered along the way. Chapter 4 presents the theory and implementation

of the doorfinder. the module responsible for bringing the robot from room to

room. Chapter 5 talks about problems and issues involved in building and usinz

maps, and presents some psychological studies done on humans and how they

solve these problems. Chapter 6 discusses how with the results of the two sensors.

the roomfinder and doorfinder. one can build accurate and useable maps. Finally.

chapter 7 discusses results of this work. related work. and how they fit toaether.



Chapter 2

Visual Analysis of the Room

Finder

In this chapter I will present the rationale behind my approach to the problem.

and theory behind the work that I have done. All of the equations that I u.-d in

the roomfinder implementation will be derived and explained.

2.1 The Approach: Breaking the Back of the

Problem

When a human walks into a room, what does he see which leads him to decide

that the space into which he has walked is a room, and not a corridor or a closet?

What enables him to conclude that despite the presence of furniture and clutter,

the space is sharply defined usually in the shape of a rectangle'? Most humans

have nearly infallible real-time stereo matching and can thus create a 21D recon-

struction of the space which they see. They can then determine where the walls

are. and thus get a feeling for the size and shape of the enclosed space which they

are in. ignoring those obstacles which may be standing against or blocking the

walls, such as tables or cabinets.

1 5
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The observation which motivates my approach to this problem is that the

clearest clue to room size is the location of the junction between the wall a: ,
ceiling in all parts of the room. Even humans are hard pressed to det rmine 'fe

location of a wall when the location of this junction cannot be seen or inferred.

Imagine a case in which a tall bookshelf is blocking the view to this junction: the

observer has no information as to how far the wall is. If the bookshelf is standing

between the viewer and the wall such that the ceilinz wall junction can be <e,:.

the observer will have no trouble in determining where the wall is.

A robot, with far less processing power than humans have. might be able

determine the dimensions of a room and approximate location in a room usinz

this visual strategy. This will require -everal steps:

(a Determining the perpendicular direction to the wall-. Thi, i, 'lone by

a one dimensional picture at constant timiie interval.- while -piinirn . a:,

creating from them a two dimensional composite itiiazo. [he point in ,',:::,'

during which most of the curves in the resultant ,-ipo.;ite image reati.,

their maximum values is the point at which the ,aiiiera was- facin the w..

b Pinpointing the ceiling wall junction in the directi, ii of the wall 1 i i

done by using stereo matching in the vertical direction to determine dept",

of features in both images.

(c) Using the distance to all four walls to localize itself and decide the room's

size. The distance to a wall is a function of the junctions' height in the

image plane. scaled by an unknown factor. which is the heiaht of the ceiling

of the room.

In the proceeding analysis the following assumptions are made:

* All rooms are rectangular.
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axis of rotation

TY

/ N

N

Fiure "2.1: A side view of the position of the robot in the room.

" At a ceiling wall Junction there is a color or illumination change which will

give rise to an edge in an image.

" Ceiling height is constant throuhout a room.

2.2 Finding the Perpendicular Direction and

Distance to the Walls

The configuration of the camera with respect to a horizontal feature is shown

in figure 2.1. The camera is tilted with respect to the wall by some anle . The

height of any feature in the image plane. y, is a function of the perpendicular

distance xr' to the feature, the focall leng:th f of the tens. and the height h' of the

feat ure:

f h'h -
( .N
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r

x

robot

Figure 2.2: Same scene. top view.

x' is a function of the angle ):

___- ]h'tac'

COs D

And so is h':

h'

h .r tano -

h' h cos o - x sin o' 1 2.

Note that r. h. o. f are constant. Also. x is a function of the angle 0 1fi, 2.'21:

r.r = ('2 t1
COS 19

where r is the perpendicular distance to the observed wall and also is constant.

If we rotate the camera with respect to the feature. we see that the height of the

feature in the image plane is a function of 04. Taking equation 2.1 and successively

substituting z'. h' and x in that order. we get:

f h' fh 'cos
-i- -h'tano .r - h'sino

f cos o(h cos o - .r sin,:)

x - sin of h cos o - .r sin o)
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Figure 2.3: A plot of equation 2.5: y as a function of o and 9. o is along the axis
receding to the left away from the viewer and ranges from 90 to 1 . i- the axis
receding away to the right and Tanges from -90: to 90'.

cos o(h cos o - - sin o)

- - sin o(h cos o -o i- sin o)

f coso hcosocos- rsin o)
r - sin olh cosocos- r sino)

In figure 2.3. y is shown as a function of 0 and o for a fixed r and h. Note that y.

the height of the edge cause by a horizontal feature. comes to a maximum when

the camera is facing the feature head on.

Next. solve for r. the distance to the feature.

hcos0(fcoso - y sino
f sin o - y cos
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2.3 Self Calibration of o

Let us for the time being make following assumptions and demonstrate their truth

in the next chapter: the robot can tell when a particular camera is facing the wall

by rotating, taking single line snapshots throughout the rotation and forming

a two dimensional composite image from them. and then finding the points in

time at which the curves in the composite image come to a maximum: it can

also identify the ceiling edge in the resulting image (the latter assumption I will

justify shortly). Now, in addition to f and y which are known. we also have

0 = 0. There remains only one unknown on the right side of equation 2.6. the

value of the variable o.

Using the assumption that all of the ceiling edges are at the same height and

subsequently dividing through by the constant h. the above equation lhecolnes:

r f cos o - Y sin o 2.7
h f sin o - ycos o

Let us name the distances from the robot to each wall r, to r4 . Addinz opposing

walls, we get:

r- , sin 2o(f 2 - YiY3' - f cos2oc 91 - Y3)

h f~sin'o - f sinocoso, yl - Y3) - Y1y' cosI

This sum must remain constant for the same two walls no matter where in the

room the robot may be: using this. we may determine the value of o given two

pairs of yi and Y3 from two different locations in the room. 0 is the angle which

yields the same value of :. for the two pairs. Figure 2.4 shows plots of equation

2.8. for ceiling edge pairs taken from actual images from five different locations

in the same room. The top graph shows the shape of the function for one pair.

the middle shows the function for all five pairs. and the bottom figure shows a

closeup of the intersections of the functions in the relevant range. with o ranging

between 25Y-45'. The points of intersection gives the value of o. Now, f. o. y, and

Y3 are known, so the room's dimensions. scaled by the unknown but constant h.
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are computable and are given by " and . This information can be used

to identify rooms by their dimensions. Also. once o is known, the robot's position

and orientation within the room can be determined at all times and can be used

to place the location of doors with respect to the room.

2.4 Determining Relative Depth Using

Uncalibrated Stereo

The preceding discussion assumes that the robot can identify the ceiling edge.

where the walls meet the ceiling. Now I discuss the method for doing this using

uncalibrated stereo.

Consider figure 2.5. Two cameras in a fixed position with respect to each other

determine a line which passes through the two focal points. If the optical axes of

the two cameras are not parallel, then this line intersects each image plane at a

point, called the epipole. for that plane. Any feature point p in conjunction with

this line determines a plane. called an epiplane. which intersects each image plane

at corresponding epilines. Therefore. every point in this plane projects somewhere

onto the epiline for that plane in the image plane. Note that all epipolar planes

go through the epipole in both image planes. If the relative position of The two

cameras is known, stereo matching is reduced to a search along one dimension.

the corresponding epitines. instead of two dimensions.

In order to successfully perform stereo matching in our application, we must

have the two cameras placed vertically with respect to each other for the following

reason: because the features that we are searching for are horizontal, they give rise

to edges only in the vertical direction. A configuration in which the two cameras

are displaced horizontally will have only horizontal corresponding epilines. and no

features to match along them. It is necessary that the epilines be orthogonal to

the features being matched: therefore, the cameras must be placed vertically with
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Figure 2.4: Equation 2.8 for five celling edge pairs. on the y axis is plotted

against o on the x axis. f =4. for both curves. The first graph is the equation
for one pair. the second is a plot of the function for all five pairs. and the last
graph shows the function for the five pairs in the range o 25'-45'. The five pairs
yield 10 intersection points. whose average intersection value occurs at o :z 3355'
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respect to each other.

Since the camera configuration is not carefully calibrated, there may be some

misalignment between the two forward pointing cameras: therefore there is no

guarantee that the two optical axes intersect at a point. However, as the robot

spins, each of the two axes sweeps out a cone. and the intersection of these two

cones forms a circle. Since we have identified the point in each image where that

camera was facina a wall, we have identified a "virtual" epipolar plane - one

which occurs in both images. but not coincident in time. The process of finding

the corresponding walls in the two images and matching along those corrects for

any misalignment. Therefore. the epipolar analysis applies in this case.

In order to correctly determine the value of h for a given feature. we must have

accurate knowledge of the baseline separation and the relative anfle between the

two cameras. But. for the previous computations. we did not require that b be

known. only that it be possible to pick out the ceiling edge so that we could u-e

its corresponding image height. The key to finding the correct edge lies in tile

fact that the ceiling edge will always be the edge farthest from the camera and is

distinguishable by this. Weinshall Wei87 discusses an algorithm for determining

relative depths of observed features using uncalibrated stereo: this method works

for a limited range and unfortunately breaks down for our case, in which the

observed feature is actually contained in the epipolar plane. However. the idea,

presented there served as inspiration for the following work.

The term "horopter" refers to the locus of points in space which, when fix-

ated upon from two points separated by some baseline distance, have zero retinal

disparity. Assuming perfect geometrical conditions (which biology does not abide

by), the horopter lies on a circle BKT%6 . Taking this same idea. but working

with two cameras which have a fixed fixation point, we can define lines of equal

disparity. Figure 2.6 shows the configuration of the two cameras. and some point

in the epipolar plane with coordinates 1x.yl. These coordinates are given with
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Figure 2.5: All points in an epipolar plane will project onto the same pair of
epipolar lines in the two images.

A

/

Figure 2.6: Configuration of two cameras whose optical axes intersect at a point.
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respect to a reference frame whose oriin is the midpoint of the segment connect-

ing the two focal points, and who!e .r axis ties along this same semelnt. The

expression for the disparity of the point is:

f.x. f.X,.
di - d. -

Y; Y,
Cos OX -Sin oy - cos oeb cos OX - sin CA- - coscJ~
n,,co s :y - sin o -

"n ' - c -s my sin - sin ox - co,. - sin,

Making the simplifying assumption that oi =:), and = f. we get the much

more manageable expression for the curves of equal disparity:

k b., - y2 ) sin 2o - 2 cos 2oby

sin 2,, - b2 - 2 - sin D

where k is disparity, and is constant in this equation. Figure 2.7 show a plot of

this function for o 1 . f 4. , cm. and k ranging from -0.1 to 0.1 cm in the

image plane. The curves emanate outward from the two focal points in ,,rd'r It

decreasing k. Note that in the case where o = 0 . the above e(liation redluces t,.:

2 .f
-k-

which describes the better known parallel camera configuratiun. were 'e CurvP-

flatten out to lines, and disparity is monotonically decrea-ing with ,depth , i,.

Figure 2.S shows the curve which passes through the ceilina ,(hze . and the

curve which is tangent to the wall and ceiling. Points b and c are at a iiaxinlumi.

and x is the point with minimum disparity between these two points. Assuming

we are able to accurately match edges along the wall and ceiling, the pattern of

disparities will first increase, dip downward to a local minimumn , then increase

temporarily and ultimately decrease again. The point at the local mininium i

the ceiling edge we are looking for.
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Figure 2.7: Equidisparate curves for o, o= V. The axes are switched, with
the r axis running up and down. The focal points are on the the x axis. In the
top figure. k ranges from -0.1 to 0.1. the middle figure is a closeup of the range
0 to 0.1. and the bottom figure shows the range -0.2 to -0.1.
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Figure 2.S: AXrrows point in the direction of increasing k.



Chapter 3

The Roomfinder:

Implementation and Results

The preceding chapter presented the theory behind the roonfinder. This chapter

will present different methods of implementing the ideas presented there, and the

results of each strategy. In particular. much of the work that I present will be

variants of solutions to the 1D matching problem. which ultimately proved to he

the hardest and most problematic stage in the correct functioning of this module.

3.1 The Robot

The initial setup is as follows: two Pulnix cameras with 4.,ram focal length lenses

are mounted on the robot, side by side on a bar emanating from the center top

and tilted backwards. The configuration i,, hown in figure 3.1. The cameras are

assumed to be mounted roughly parallel: the procedure i, inensitive to errors

introduced by small deviations in roll. pitch and yaw. The bar i, tilted backwards

sufficiently such that the junction between the wall and the ceiling, which from

now on will be called the -'ceiling edge'" or "'ceiling-wall junction-. i, visible from all

parts of the room. The 4.8mm lens has an angular range in the vertical direction

28
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Figure 3.1: The position of the cameras mounted on the mobile robot.

of approximately 600, and introduces some distortion into the measurements. In

these experiment the distortion was roughly corrected for. since it accounted for

errors of up to 20 towards the edges of the image. The image plane is 6.6rm

6.Smm. which translates into 454 , 576 pixels. The robot can rotate. though not

at a known velocity. Upon startup. the robot does not know its initial position or

orientation in the room. The visual data collected by the mobile robot is processed

remotely on a Lisp Machine dedicated to this purpose.

3.2 Finding the Perpendicular Direction to the

Walls

The motivating assumption behind this approach is that the horizontal edges in

rooms tend to be aligned with walls. As a result. in a rotational scan of the room.

curves formed by horizontal edges will cluster around certain values, and these

values will indicate the perpendicular direction to the walls.
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Figure 3.2: The composite image from the two cameras. This can be thought of
as height. on the y axis. as plotted against time or 0 on the x axis. The white
deformed squares in the top part of the image are the lights on the ceiling: in
the right image in the bottom right-hand corner, a Lisp Machine terminal can he
distinguished. Above the terminal to the right is a bookshelf. See BB.MS7 for

previous work in composite images.

An experiment was performed in four very cluttered rooms in the Al lab. The

robot rotated through an angle of 360', recording the intensity values from a

one dimensional strip from the center of each camera through time. and finally

composing a single image from each camera. The resulting composite is shown in

figure 3.2. The horizontal edges in the scene give rise to the curves in the composite

image, whose shape is ab predicted. In the images pictured here, the robot was

not rotating at a constant velocity, but succeeding versions of the experiment did

rely on constant rotational velocity.

The composite image is then convolved with the derivative of a gaussian in the
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vertical direction. This performs both smoothing and differentiation in one step.

and the maxima and minima of the result yield the vertical edges. The edges are

then tracked through each time slice to find the curves (fig 3.3).

The edge-tracker was designed to work in real time as the image was being

collected. and so works in one time slice at a time, referencing at most the previous

and present time slice at any point in time. It is extremely simple and works as

follows: for each edge in the previous time slice ly direction). the current time

slice is scanned for a matching edge within a fixed sized window. The window is

searched from the center outward. and the first possible matching edge is chosen

and linked to the previous edge. An edge matches one in the adjacent time slice if

its intensity gradient is in the same direction. that is, dark-,light or light -- dark:

due to AGC (automatic gain control built into the camera ) we cannot demand that

the regions which the edges separate have the same intensity as in the adjacent

image. The slope of the line connecting the two edges is used as the basis for

determining the location of the center of the window for the successive time slice.

There is also an instance variable called -'variance" for each curve, which indicates

how closely the last edge added to the curve fit the projected value for that time-

slice: two curves contending for the same point use this variance as the criterionl

for determining who is the real owner of the disputed point.

Sometimes, faint edges do not show up for several time slices. In order to

compensate for the lost edges, the edge tracker receives as a parameter the number

of images that it is willing to skip between losing track of a curve and picking up

the other side of it. The value of 2 seemed to give the maximum number of true

edges. and the least number of false one,. though this value is dependent on the

particular rotational velocity that was used.

The traced curves are then smoothed. and the angle at which the maximum of

the curve occurs is found. This angle is the body rotation at which the distance

from the robot to the feature which gave rise to the curve is a minimum. All
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Figure 3.3: Edge-finding and curve-tracing
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curves which come to a maximum are then histogrammed together in the following

manner: each curve over a certain length threshhold contributes a weight of 1 to

a bucket according to the .r coordinate I timel of its maximum. and the bucket

contents are then smoothed in order to coalesce maxima which lie within a small

range of each other. Finally. the histograms from the two camera composites

are cross checked against each other to find the walls. Since the velocity is not

constant. the walls do not occur at fixed intervals in the images. The entire process

is shown in stages in figure 3.4. The information required for this stage to work

is the sweep range of the image. i.e.. the robot need only be able to determine

whether or rot it has made a full revolution. This is usually easily available from

odomet ry.

For the histogramming stage described, several different weighting ,Chemes

were experimented with in order to improve the estimate of the perpendicular

direction to the walls and eliminate noise:

* Weighting proportional to curve length - this was in order to favor the longer

edges such as tables and blackboards. which tend to line up with walls. over

shorter edges like chairs and randomly placed furniture, which tended to

cause noise.

* Using only the longest 1 4 of all the curves. all of which contribute a weight

of 1.

* Using only curves which also have a pronounced rising or descending stage.

all of which contribute a weight of 1.

While each of these strategies worked particularly well in specific cases. they

all failed in some cases. The simplest strategy. that in which all curves contribute

a weight of 1. worked best most consistently and never failed drastically.
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Figure 3.4: Histogramming the maxima and finding walls by cross-correlation.
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3.2.1 Experimental Results

The results of this stage are consistently accurate. In tens of experiments, the

algorithm has seldom failed. Additional robustness has been added by the recent

ability of the robot to rotate at a constant velocity, and to rotate to specified

relative angles from the current position. This has enabled the robot to identify

the locations of all four walls in a room as long as the above algorithm has yielded

one reliable wall.

Figure 3.5 shows the walls found when the above algorithm is run on three

other rooms of varying shapes and sizes. At the time these composite images 'ere

taken. the robot was not rotating at a constant angular velocity. In addition. there

were people roaming around the room, which demonstrates the insensitivity of this

stage of tht algorithm to the dynamicism of the environment.

3.3 Determining Distance to the Walls

As explained in the previous chapter. finding the perpendicular distance to the

wall once the perpendicular direction is known requires the following steps:

o Matching edges along a vertical strip from each camera.

o Choosing the ceiling wall junction using the disparity information from the

previous step. and

o Plugging the height of this edge in the image plane into equation 2.7 to get

the distance to the wall scaled by the height of the room. We always use the

height from the same camera for this step. though which camera we choose

is unimportant.
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Figure 3.6: The lines pictured here are all the same distance apart in actuality.
ilustrating how the wide angle lens introduces distortion into the image.

3.3.1 Correcting Lens Distortion

In the actual images. it was found that the wide angle lenses distorted the image

greatly, introducing errors of up to 20( towards the edges of the image plane.

Figure 3.6 shows an example image from one one of the cameras: as can be seen.

the image is stretched out towards the center of the image and is shrunk on the

sides.

In order to accurately calculate disparity from the matching stage. the distor-

tion must be corrected for, but it is sufficient to correct only for the 1 D vertical

strip from the center of the image. This was done in the following way: a snapshot

of the same scene as pictured in figure 3.6 was taken from both cameras, and the

vertical edge finder was applied to the middle vertical strip of each image. The

dark-light edges from each strip were entered onto a list for each image.

Next. a function of lens distortion as a result of vertical pixel position in the

image was calculated by plotting b - a as a function of - for every pair of edges

with vertical pixel coordinate a and b on each list. The two functions (one per
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Figure 3.7: A plot of distortion as a function of vertical pixel position.

camera i. represented by lists of points, were then merged together and srmuothed.

then normalized by dividing all values by the value in the center of the imaae t pixel

227 to produce the function shown in figure 3.7. This function was recorded in a

lookup table in discrete intervals of 5 pixels.

The offset correction function then linearizes all distances by taking a vertical

pixel offset as input and expanding every .5 pixel interval between the vertical

center of the image and the offset given as input by a factor of 1 f for that

position. where f is looked up in the table. This correction expands the image

plane in the vertical direction to 7.4mim instead of 6.6mm. and accounts for a

corresponding virtual focal length of I< . 6.5mm.

This correction function is used to correct the values of all y offsets before they

are used in any calculations. and the adjusted value of the focal length was also

used for all calculations.

3.3.2 Stereo Matching

An in depth analysis of matchina algorithms is beyond the scope of this thesis.

however. experimenting with variants of existing techniques proved to be a major

part of the entire project. ,ince the success of the approach rides overwhelmingly

on the accuracy of this sinifle step. I discuss some of them here.
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Matching Constraints

When matching features across two images. several constraints are utilized to

nrune the search space of possible matches. These are:

* Epipolar - this constraint was explained in the previous chapter. section

2.4, and allows for searching for a particular feature's correspondence along

a ID strip instead of a 2D plane.

e Ordering - this constraint means that all features are present in both images

in the same sequence.

e Continuity - i.e.. the disparity of nearby matched points cann e too

different.

* Orientation - this prevents a point which comprises an edge with slope -1

from being matched with a point belonging to an edge with slope -i. for

example.

* Contrast - matched points must divide regions of similar intensity or gradi-

ent strength.

In the matching problem at hand. only the epipolar and constrast constraints

apply. and even these apply only loosely. The ordering constraint does not strictlY

hold. since the two cameras are displaced with respect to each other and there-

fore see different features at the two edges of the image planes. The continuity

constraint does not apply, since the features at which the cameras are looking

are discontinous. The orientation constraint does not apply: one need only look

at figure 3.2 to see that in one image, the top of the lisp machine forms an up-

ward sloping curve and in the other. a downward one. This is due to the baseline

separation of the two cameras in the vertical direction.

Even the epipolar constraint and the constrast constraint apply only loosely.

since when the calculated direction to the walls are off by only a few pixels. we are
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no longer using strictly epipolar lines. The contrast constraint is violated slightly

by the fact that since the two cameras register slightly different features, if a light

is present in one image and absent in the other. the intensity values of the entire

image are affected. However. even with these problems we can use these last two

constraints effectively with some readjustments. The most obvious case of the

contrast constraint was used in every technique - the constraint which prevents a

match between a light-.dark edge and a dark-dight edge.

The scale space method of matching was considered here 'Mor77. but it worked

poorly, probably because of the violation of the ordering constraint, and after

several attempts this line of investigation was abandoned.

At the heart of every matching technique experimented with was the Ohta

and Kanade dynamic programming method, which tries to maximize the number

of matches across the two ID lines subject to some constraint based weighting

method to assign positive values for the goodness of any individual match, and

penalties for skipped (unmatched) features OK85. The trick in using this method

was to try to override the rigidity of the ordering constraint (which does not allow

for unmatched features) with high weights for very good matches according to

some other criterion.

[n all the matching techniques, a kind of continuity constraint was imposed by

the presence of a parameter called maz-disparity. which limited the disparity in

pixels of any proposed match. The value of this parameter affected the accuracy

of the different matching methods in varied and often unpredictable ways.

Matching: First Pass

The first two methods experimented with were assigning goodness of matches

based on (I) comparable intensity, and 2) comparable gradient strength. with

a moderately large value for max-disparity. Both of these methods performed

quite badly. Figure 3.8 shows the matches yielded by this method for the second
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Figure 3.8: The farmost right and left illustrations are the second wall from the
left and right composite images shown in figure 3.2. The vertical black line in each
image is the point at which the robot has determined it was facing the wall head
on. The two center illustrations show the correspondences along the two black
lines: for any particular line, the left and right endpoints connect corresponding
edges alonge the vertical black lines in the left and right composite image. These
two illustrations show correspondences by intensity (left) and gradient strength
(righti.

wall of figure 3.2. As can be seen. the matches are completely unconstrained in

direction: what seems to be needed is a stronger continuity constraint, along with

some constraint that would incorporate the notion, apparent when looking at the

two images, that the two original images seem to be vertically offset by a fixed

amount.

Second Pass

The next method tried to improve upon the previous technique by finding the

optimum vertical offset between the two images that would allow most of the

edges to find a match within a very small ma-disparity range. The algorithm
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to do this is: every possible match between edges in each line defines an offset

which is given to the matcher. If there are n edges in each line. this defines n.

offsets. thus the matcher is invoked that many times. and each time returns a

list of matches for that offset. plus some overall "'goodness" rating for that set

of matches based on minimizing the summation of disparities over all matches.

The offset which produced the best set of all rn. sets of matches is chosen to be

the optimal offset, and then the matcher is run again with that offset in order to

adjust the matches using first the intensity criterion, then the gradient strength

criterion. This method yielded much better results I figure 3.91. though none of

the three methods (by position only, position and intensity, and position and gra-

dient i performed obviously better than the others. and all still had some incorrect

matchings.

Using this same idea of first finding the optimal offset and then adjusti iI4 )V

another criterion, a fourth technique was attempted. This one attempted to fint

corresponding features not by absolute gradient strength, but by relative gradient

strength within a small region. The results were very accurate on several test

cases. and an example is shown in the fourth box of figure 3.9.

Final Matching Results

In actual runs with the robot. the carefully designed matching by relative gradient

method with constrained disparities failed in an unanticipated way. Figure 3.10

shows an example where the presence of many strong edges on the bottom of a

nearby wall pulled the optimum offset very high. to about S9 pixels: thus. the

ceiling edge. which is further away from the robot and thus has a much smaller

disparity, was incorrectly matched and thus unidentifiable. This example made

clear the way in which this algorithm tends to "'focus" the cameras on the part of

the image with the strongest edges; if the ceiling is not in this range, it cannot be

seen.
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Figure 3.9: Matching along the second wall of figure 3.2 by (I) position alone, '2)
position and intensity. (3) position and gradient strength. and lastly (4) position
and relative gradient strength.

To fix this problem. it was decided to manually adjust this 'focal range" of the

robot to a range in which the ceiling edge was likely to be. which for this camera

configuration turned out to correspond to a vertical offset ( shift) of Z- 30 pixels.

and to expand the maz-disparity parameter so that the robot could match edges

through a much larger depth range. Since the wideniig of this parameter led to

some more incorrect matchings, a pruning technique was added to remove outliers.

with the assumption that the disparities of all matches that lie on the ceiling

or wall should form a smoothly descending-ascending pattern. Both matching

by intensity and matching by relative gradient yielded good results using this

modification, and the results are shown in figure 3.11.

Since the relative gradient and intensity methods still did not return exactly

the same matches. another pruning method was tried where only those matches

that were found by both techniques were kept, and those that were found by only

one of the two techniques were thrown away. This tended to throw away too many
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Figure 3.10: The relative gradient strength matching technique falls in this image.
The black vertical lines show the walls along which the algorithm is matching. A,
can be seen. the presence of many strong edges on the bottom part of the wall
pulls the offset very high. and so it cannot correctly match the edge, on the top
part of the image where the ceiling edge lies.
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Figure 3.11: The results of the final and ,iiost reliable method. using a manually
adjusted optimum offset and large disparirt range. The first set show, natching
by relative gradient strength, the econd -huw, matching by inten ,itv.

adequate matches. Finally. matching by intensity in conjunction with a inanually

specified optimum offset and large rnax-,ispardty was chosen as the best matching

technique.

Even with this -'best" methc-d, chosen from all the other candidates. tile

matches returned on a single snapshot from the two cameras were -till unreli

able. Interestingly enough, when 100 snapshots in a row were taken from the two

cameras in exactly the same position and 1ighting conditions, there were almost

as many variations on different matches returned. To increase the chan.:e that the

ceiling edge chosen from any particular -et of matches was the correct one. th,

sets of matches returned from consecutiv, image pairs were allowed to vote for

best ceiling edge. and the winner was deened to be the actual ceiling edge. Using

this method. an accuracy rate of about 75,'- was achieved over about .50 trials.
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Figure 3.12: Though the disparities of matches along two perpendicular lines
follows a two-humped pattern, it may be the case that there are not enough
matches to elucidate the position of the ceiling edge in this pattern. These two
examples are different, but are indistinguishable from each other when looking
only at the disparity pattern.

3.3.3 Identifying the Ceiling Wall Junction from Dispar-

ity Patterns

As discussed in the previous chapter. the pattern of disparities should elucidate

the location of the ceiling wall junction. since this junction should fall into a local

minimum well. In actual experiments however, it was found that there were not

enough matches to constrain the position of the ceiling edge to a unique position

in the resulting disparity plot. For instance, in figure 3.12. the ceiling edge is the

first edge before the maximum disparity value in the top example. and the first

edge after the maximum disparity in the bottom example. The case in which the

desired junction is the maximum disparity pair occurs when there are no points

matched on either hump.

For this reason it was decided to simplify the problem of finding the correct

ceiling edge by mounting the cameras more parallel. This has the effect of widening

the curves in figure 2.7. thereby limiting the visible range of the cameras to the

area between the tangents to the wall and ceiling in figure 2.8. so that in this

range, greater depth actually does correspond to minimum disparity.
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Bearnng .4ctual Erpf rrmental

I N 1:3 * 52 *26 * 26
W is 16 16 16
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S 14 1 * 60 *60
E 12 12 12 t1

Figure 3.13: The results of the roomfinder in several trials from four different
locations in a room. The starred numbers indicate values which are extremely

inaccurate.

3.3.4 Experimental Results

For this experiment the robot was placed in four different locations in a large

room filled with furniture, clutter and people. and was provided with the value

of o = 33. The results were multiplied by the height of the ceiling for human

understandability. The results of the roomfinder in several trials from the four

locations rounded to the nearest foot are shown in figure :3.13. Figure 3.14 shows

the four locations in the room where the experiment was performed.

3.4 Self Calibrating o

For this experiment the robot moved tu ,uccesive positions across the room.

taking note of the ceiLing edge of opposing walls. Note that for calibrating, it is
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N2

Figure 3.14: The four locations in the room from which the roomfinder was tested.

Wall I Wall 2
348 114
328 136
317 190
112 224
417 268

Figure 3.15: The y offsets of the pairs of ceiling edges in the bottom camera.

unimportant whether or not the robot is facing a wall: the technique requires only

that the walls be parallel. The y offsets of the pairs of ceiling edges in the bottom

camera (which is nearer to the robot's center of rotation) in pixels are shown in

figure 3.15.

These points were plugged in pairwise into equation 2.8 for successive values of

o, as explained in the previous chapter. Since there are five curves in each group,

there are ten intersection points. These are rounded off to the nearest degree in

figure 3.16. The table indicates the fourth point does not intersect any of the

other curves and so is a bad data point. In general. the curves are very sensitive

to small errors in y, and as the ceiling edges returned are only about 75'C reliable.

they cause large errors in the calibration calculations as can be seen.

When the ceiling-edge pairs were hand picked and fed to the program in a
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Angles of Jnters, 'tzon

2 6
3 46 29
4 X X X
5 26 26 26 11

Average Angle: :35.7-
Manually Measured Angle: 33-

Figure 3.16: The ten intersection points of the curves defined by the edges in
figure 3.15

.tnght, of Intcr.sction

1 2

2 39
3 :37 34
4 37 35 36
.5 37 3.5 36 29

Average Angle: 35.5:
Manually Measured Angle: :35

Figure 3.17: The results of self calibration when the ceiling edge pairs were man-
ually picked.

different run. the results were rea.,onably accurate (3.17). However. this is not a

fair criterion by which to judge the technique.

3.5 One Last Experiment

Though the algorithm which calculates distances is not always reliable, it does

suffice to do interesting tasks such as traversing the diagonal of a room. This is

done by spinning in place, locating the walls I which is very reliables. picking what

the robot thinks is the farthet diagonal (less reliablei. turning towards it and

heading there for several feet, then checking again to readjust the direction to the
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chosen corner.

This experiment was repeated several times with great success. Though the

robot did not always pick the furthest diagonal initially, it always did pick some

corner, most of the time one which bordered one. if not both. farthest walls, and

could relocate the same corner again and again after each spin. The robustness of

this process is due to the fact that even when the robot got the distances wrong.

thereby picking an angle that does not point directly to the destination corner. it

would get another chance. and eventually did meander into the corner where it

tended to want to crash into the wall. not seeinz the ceiling junction once it got

there.

3.6 Evaluation of Results

The results from roomfinder can be broken down into several stages. -ach of which

can be evaluated separately - wailfinding. self calibration, and wall distance

estimation.

The wallfinder worked very robustly, and is the single most successful stag' of

the process. failing in extremely few cases. Its success is due to the uiiniualitv of

the information from which it can infer far more: namely, the fact that it needs

to identify only a single wall in order to determine the perpendicular direction to

the other three. This would suggest that behaviors be designed which depend as

much as possible on the information from only this stage. The robot's traversing

the diagonal of a room is an example of such a behavior.

Since the calibration stage is very sensitive to errors, it is more likely to benefit

from a very large number of data points from which the obvious outliers can he

eliminated. This suggests that the calibration technique be used not to initially

calibrate o. but rather to track drifts in o from its initial value over time. since

the time required before startup to collect enough data points for reliable initial
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calibration would be great. whereas each reliable pair of opposing walls can be

used to update o as the robot maps.

Though the roomfinder seldom correctly ranges all four xalls during the ;aipl

sweep. it often correctly ranges opposing pairs of walls. If we assume that on the

average one of four readings will be incorrect, then from every room sweep one

of the dimensions will be correct. The incorrect values are recognizable becau-e

they will not conform to previous rf adings. If the robot also has the ability to

recognize doors. it can also use the information that it expects to be in the ,aame

room because it has not passed through a door I to prune incorrect readings.

Note also that certain locations in the room yielded incorrect ranges to partic-

ular walls. but moving a few feet to a new location corrected the Tnisconception

This can also be used to prune bad data points.

If the results of the matcher are reliable. then we can determine the ,'ration ,of

the wall-ceiling junction even in the absence of a h riht ne ,"ane at that point

by fitting two perpendicular lines aiong the other points in the image. which will

usually fall along a wall or ceiling,. and then determinin the osition of their

intersection.



Chapter 4

The Doorfinder

In order to connect rooms in a node map. which is the higher level goal of this

work. the robot must be able to move between rooms through doors: thus. the

need for a doorfinder. This chapter presents the theory behind how the doorfinder

operates. and some experiments are presented.

4.1 Self Calibration and Depth Estimation

The doorfinder is based on the work described in BFM"7 . the main ideas of which

I will present here. Two roughly forward pointing cameras whose configuration

relative to each other is unknown are mounted horizontally on the robot, and go

through a calibration stage in which the robot moves forward at an unknown but

constant velocity for some number of images and tracks the horizontal motion

of vertical features across its field of view. Like the roomnfinder. the doorfinder

uses only a one dimensional strip from its field of view: however, the doorfinder

uses horizontal strips to track vertical features. while the roomfinder uses vertical

strip, to track horizontal features. If position for a feature is plotted against time.

then every feature traces a hyperbola in this plot (figure 4.1 ).

Uing the motion of these tracked edges. the center of expansion for each

.52
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.. ,, ,. ' ,7/,/ /

Figure 4.1: A plot of a single horizontal strip from the middle of the camera
against time ly axis).

camera is deduced. The time to collision in images for any particular horizontal

feature is given by the equation:

r -c cr

.r C2 - f2  4.1

where c is the center of expansion. f is the focal length. r is position of the

observed feature in the image plane, and r is its velocity in pixels per frame. All

distances are measured in pixels from the center of view in the image plane. Next.

the ID features are matched in the right and left images. Every matched pair

of features which have comparable depth estimates (where depth was determined

according to equation 4.1) is considered to be a -'correct" match. and is used to

calibrate the following two parameters:

nV'(d1 , -,td,.j - - '(l z,)Z'(d ,- d. .

n-(1 d :? (d, - d,

V (1 " )V'(d,- d,,),z, - 'di, -

F =.
;) - _ .l. , :

These two parameters are in turn used to determine depth according to the ap-

proximation equation:

F - di - d2

where di and d2 are the horizontal position of the same feature in the two cameras.

and z corresponds roughly to linear distance provided that the tilt of both cameras
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from the direction of motion is within 5- (For a more detailed explanation. please

refer to .BFM871). Note that the units of = are in images: the time per image

pair must also be known in order to know the time to collision of any particular

feature.

After the initial calibraticn stage. the centers of expansion, c. are known for

each camera. as well as the parameters .\ and F. which will provide depth infor-

mation lin terms of number of frames to collision I of features matched in the two

images.

Note that in the above analysis, the data points used to calibrate the pa-

rameters A and U were used only after they had been corroborated from two

independent sources. namely. time to collision estimates from the forward iliot ion

analysis from each camera. This use of redundant info'nation helps to prune out

the bad data points. It would seem as though a similar technique of redundant

information cross-checking should apply to the roomfinder problem: however, in

the doorfinder configuration it is only the fact that the angle between the optical

axis of either camera and the direction of motion is confined to within 5- that al-

lows for a reasonable time to collision estimate. In the roomfinder configuration.

the angle of tilt is generally greater than this: so the time to collision analysis

does not apply.

4.2 Implementation

The previous section described how to perform self calibration and depth estima-

tion given two forward pointing cameras. Given this algorithm, the doorfinder

is a straightforward implementation of these ideas. It continually monitors the

world out of the two cameras, taking two snapshots and matching edge, along the

middle horizontal strip of both images to get depth information from stereo. and

looking for a door in the resulting depth pattern. A door is defined as two edges
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Figure 4.2: The configuration of the center of expansion with respect to a potential
door in a single camera.

at roughly the same depth separated by at least one edge of greater depth. The

assumption is that the ability to see an edge implies that there is a free path to it:

therefore the edge separating the two edges of comparable depth implies that the

two edges are traversable. When the robot finds such a pattern of edges. it turns

such that the two door edges are evenly spaced around the center of expansion

of both cameras. and moves towards it. The desired angle of rotation for each

camera is:

9 tan_1 d1 - d2 - tan- C

2f f
where C is the center of expansion in the camera calculated from the self calibra-

tion stage, f is the focal length, and d, and d2 are the horizontal coordinates of

the two door edges in the image plane. Each camera yields a value for 0 which is

averaged together for the final rotation angle. Figure 4.2 shows the configuration

for a single camera.

The hypothetical door. once chosen, is not rechecked, since both door edges

move out of the image plane of the cameras almost immediately as the robot moves

towards it, due to the very narrow field of view. This means that the doorfinder
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at present works "ballistically": it point, towards the door from a range of over

ten feet (it can't see both door edges much closer than this) and "fires" at it. This

requires a fair amount of accuracy from the initial rotation anle calculation in

order to successfully traverse a door.

4.3 Results

The experiments with the doorfinder were performed with two forward pointing

cameras with 16turn lenses, each having an angular range of only about 20. The

robot performed six self calibration runs. all of which resulted in accurate values

for the center of expansion. but only one of which yielded rea~onabe values for the

calibration parameters .A and F. The -ood run yielded the value, CF., = 276.

C-q. = 3:330 in pixels. and .\ = 2633 and F = 3. The value, of the calibration

parameters from hand calibration were .\ = 2709 and F = '0. which were very

close to the self calibrated values. However. in the succeeding experiments the

hand calibrated parameters were used. since the depth estimation is very sensitive

to inaccuracies in these values.

Upon looking at the failures of the self calibration runs. it wa, noticed that

the calibration parameters were extremely sensitive to small errors in the center of

expansion estimation. Since the cameras' orientation relative to the direction of

motion was constantly shifting due to unevenness in the floor and the movement

of the camera mount relative to the base from jiggling, the centers of expansion

would sometimes move within a single run. affecting the time to collision estimates

of matched points and yielding very few data points for the calibration.

However. using the hand calibrated parameters. the robot was able to locate

and maneuver its way through doors a, follows: the robot was commanded to

rotate. checking edges after every 1 ,tep,. until it found what it thought was

a door. At this point it calculated the angle through which it would have to



CHAPTER 4. THE DOORFINDER 57

A

Tito

Figure 4.3: In this birds-eye view. Tito is facing towards the fountain and sees two
edges at approximately the same depth. marked with x's in the drawing. However.
it is confused by the similar looking edges on the water bottle. and incorrectly
thinks that one of these is far away.

turn in order to line its direction of motion through the midpoint of the door. as

explained in the previous section. and finally it would rotate and translate forward

for as many images as required to get it just past both door edges, remember that

time for the robot is measured in images. and with constant velocity this gives

distance).

In general. during an angular sweep of a door. both door edges are visible

in both images for about twenty l steps. therefore the doorfinder has several

chances to find the door even if it doesn't recognize it the first few times. The

more serious case is when the doorfinder finds spurious doors, this problem occurs.

again, due to a matching failure. In over a dozen runs. the doorfinder found a

true door over half the time during an angular sweep and successfully turned

towards it and traversed it. Unfortunately, it identified spurious doors almost as

often. This usually was due to finding two edges at the same depth correctly,

but matching the separating edge incorrectly, thinking it was further away than

it really was. It particularly liked the area near the water fountain by the open

door. which happened to contain many similar looking vertical edges. The matcher

would consistently be confused bv these, and the robot had to be prevented from

crashing into the water fountain more than once (figure 4.3).
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4.4 Evaluation of Results

The doorfinder's functionality has two separate parts. self calibration, and actual

doorfinding using the calibration results. In experiments with the~e two part,

it was found that doorfinder's self calibrating stage is very sensitive to small

errors in the center of expansion. This problem might be attenuated by very larae

numbers of data points which will be continually collected as rhe robot runs. since

the correct values are expected to cluster around a single value, allowing outlier,

to be dropped. However. at the present time this stage doe, not work reliably.

At present. the doorfinder has successfully managed t,, ,,ate and tteer

robot through doors in about two thirds of the trial cases. Identifving two edg,,-

which are not door edges is not considered to be a failure unless it causes he

robot to run into walls. which it has occasionally tried to do. Note. however. That

in a complete system other subsumption layers would be pr,tectin_ against such

collisions.



Chapter 5

Mapping Issues

This chapter is a change in pace front 'h previous technical chapters. In it. I

want to explore the issues of what a map i,. what it is used for. and how maps

are represented and referenced. I also make the initial assumption that human

beings are the best e.ample of map builders and users known. and are thus valid

subjects to emulate when porting the problem to robots. The ideas discused

here are intended to ruot:.--',- the subsequent chapter. which will discuss how th-

modules developed in this thesis can interact to build and use navigable map-.

The first part of the chapter xill discu,, issues of map representation. the next

part will discuss psychological -t udies on humans. and finally I will talk about what

principles can be used to shed oitie liht on possible robot map representations.

5.1 What is a Map? Some Representation

Issues

Before starting to talk about robot mapping. we can firs;t put the entire analysi.

into the context of the higher level question of - what is a map. and what is

it used for? This at first seemingly simple question can. as all simple questions.

become more complicated the more one looks at it. An obvious answer is: a map
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is an accurate model of the knowable world, i.e., the accurate representation ot

the location of all objects in the known world.

This mnudel of the world is used in several ways -

(a) to assign the user an absolute location within the model,

b) to know the locations of other objects or -'places-. as vet undefined.

c) to use the information of i a and (b to perfori tasks. either of manipulation

(collecting soda cans. placing block A on top of block B) or of navigation

getting from where one is now to where one wants to bei.

Another question to ask is, is a map a static or dynamic entity? A model of

the world can be arbitrarily precise - for it to be perfect. it would have to be

dynamic. If we look at our own ideas of what a map is. it is clear that we generally

consider a map to be not an exact representation of the world, but rather a static

entity which models only those things which are invariant. For example. a floor

plan of a building includes walls and doors. but not furniture, and a map of a city

includes streets. parks. and even monuments. but not a travelling circus campina

in the middle of a park. even though the circus may be physically larger than

other sites which might be included in the map. We have defined a map at thi,

scale of precision due to iai the ability to distinguish between static and dynamic

objects. i b the ability to use those objects which we consider static as reference

points, and (c) the ability to react to the unpredictability of dynamic objects in

real time. In other words. given our perceptual abilities. we have defined maps to

be at the scale at which we can use the immovable objects represented therein a,,

global reference points.

5.1.1 The Problem of Planning

Chapman has demonstrated that domain dependent planning is semi-decidable

Cha85a': this means that if a plan which would achieve a particular goal exists. it
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can be found by a computer given the appropriate inputs. but if it doesn't exist.

the computer may never be able to discern this and would loop forever looking

for the solution. This development is taken by some researchers as a justification

for rejecting planning in subsequent work in robotics. and is particularly evident

in the work of Connell ConSS and Horswill 'Hot8. Much of the work done by

Brooks and the MIT mobot group is concerned with exploring reactive behavior

as an approach to robot control. and as an alternative to representation. Reactive

behavior is on the other end of the spectrum from planning. The term refers to the

concept of acting on the world according only to what stimuli are instantaneously

acting on the agent. Implicit in this model is the idea that there is no state or

memory associated with the agent. However, there is a well-defined middle ground

which is a natural outcome of the previous discussion on mapping.

There is no reason to dismiss the ideas of planning and state becau..e they

cannot solve the comprehensive problem of action. If we limit their !,ope to

those problems for which they are suited. they serve us well. By the same token.

it is a fallacy to reject reactive behavior because its critics claim that there is

a limit to the behavioral complexity that this approach can produce. Because

dynamic objects" movements cannot be instantaneously modelled or predicted.

the interactions between the robot and such objects cannot be planned and are

ideally suited for the appLication of reactive behaviors. This point naturally leads

to the idea of behavioral decomposition into planning and reactive procedures that

together determine the actions of the robot. an idea inherent in the subsumption

architecture, discussed in BC86.

To apply this behavioral decomposition to the problem of navigation, it is clear

that there will be a need for at least two kinds of behaviors:

* Planning behaviors: the problem of planning is undecidable. but if the do-

main is limited to a finite number of objects. the search space of all possible

plans is also finite and therefore decidable. For a navigating behavior which
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uses a map to deternine location, the number of rooms is finite and therefore

is an example of such a domain.

* Reactive behaviors: these behaviors will deal with dynami," and unpre-

dictable objects in the world. i.e.. all those things which the previous itodule

cannot model.

The idea of behavioral decomposition into planning and reactive modules is not

new. and is already inherent in the control architectures of at least one imple-

mented system DHK-S8.

5.1.2 Performing Localization and its Inherent Problems

The above discussion renders the issue of mapping and navigation asain :nto a de-

ceptively simple problem: it would seem to suggest that the major problem facing

navigators is the classification of all objects in the world into static and dynamic

objects: once this is done the appropriate behaviors can work in coordination to

perform "'navigation". However. even given this classification, there is still a ma-

jor source of uncertainty inherent in this analysis: the instantaneous position of

the robot within its own model of the world. There are two fundamentally differ-

ent techniques which are used to update the robot's actual po ition in its map.

They can be used either separately or in conjunction. These are: a I trajectory

integration and (b) local feature identification and subsequent [notion deduction.

However. neither of these techniques is infallible. Trajectory integration is limited

by the precision of the odometers: the resultant cumulative error is unbounded

with time. That is. the robot is absolutely -elf-centered and lives in a solipsistic

world. one which diverges from the real world as time passes. Ther,-fore. unless

technology reaches perfection. it is unwise to expect to ever be able to accurately

perform localization using only this information.
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The second technique. feature detection and motion deduction. has been suc-

cessful by and large only in static environments due to our present incapacity to

adequately identify particular objects in real world scenes: this information is a

prerequisite for distinguishing dynamic from static objects. However. since this

latter technique is limited only by our present information processing capabili-

ties and not by any inherent technological limit, it is reasonable to assume that

the more successful route to accurate localization lies in those methods which are

based on the identifiability of places KBK7. KB88b . whether or not we can ac-

curately deduce this information with present sensina and processing techniques.

Dean has done work in classifying different kinds of map building problems ac-

cording to computational compleXity bounds involved in updating and referencina

them Dea,S . Three of the relevant kinds of problems he discusses are -

9 The --alert commuter" problem. in which sensors are perfect. and thus di -

crete locations uniquely identifiable. and every transition between locations

is taken note of by the robot. The only uncertainty is in the transition func-

tion. which has an uncertainty associated with its direction of transition.

The problem at hand is determining the correct ordering of locations in the

map.

* The -'myopic commuter" problem. in which there is uncertainty associated

with both movement and sensors. so that locations are only probabilistically

identifiable. For this problem. the size of the map i- unbounded with time

(given that no information is ever discarded). and the set of all places the

robot could be is also unbounded with time.

* The "grid world" problem. in which the robot can move in any direction

in an n dimensional grid. and has absolute orientation information. for in-

stance. an accurate compass. For this problem it can be shown that build-

ing and referencing the map can be done in time polynomial to the number
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of locations, and the set of possible locations after each transition is also

bounded.

Given the computational complexity of these problems, it would seem as

though we would do best to have a perfect sensor. so that we could uniquely iden-

tify the robot's location. Though this may be an unreasonable goal to hope for.

there are ways to increase the identifiabitity of locations. usina only the doorfind-

ing and roomfinding sensors presented here. which will increase the chances of

turning the mapping problem into an even more simple variant of the "alert com-

muter problem".

5.2 Intuitions Taken from Psychological

Observations

The previous section raises several issues which make navigation appear to be a

difficult task. vet biological creatures are able to do it. even the least developed

ones. such as ants and bees WilT1 . While some have turned to these creatures

for inspiration, the fact that researchers can communicate with humans can also

provide insight as to the psychological devices used to represent locations and

their relationships with each other, and how these devices serve to overcome the

difficulties inherent in navigating.

The question of how to define location is not a trivial one: location can be

defined at different scales of relativity, none of which is absolute. For instance, if

I am sitting on a particular chair, am I in the same location if I move the chair

across the room. - or if I move the building which I am in to another state. -

or if the earth revolves slightly around the sun as I sit motionless in my chair. --

and so on. People seem to be able to define location at several scales. for example.

a circus encampment relocates to different cities. yet the maintenance of a fixed

internal arrangement of tents serves to create the impression among the performers
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that they are in the same --place" Re16 .Generally, it appears that people define

location at a scale commensurate with their perceptual abilities, calling a location

"absolute" when in fact they mean "to the best of my ability to distinguish".

This explains the difficulty that a robot I whose perceptual capabilities do not rise

above the probabalistic identification of local small objects) has in localizing itself

once the trash can. whose absolute location it depended on. is moved to another

part of the room.

5.2.1 How Do People Do It?

Common observation is sufficient to demonstrate that humans have a very poor

sense of absolute distances and angles: for example. you, the reader. cannot ac-

curately estimate the distance to the nearest wall even though you can clearly

see it. nor can you draw a good approximation of even a 3W: angle without refer-

ence to a 90- ,ne. It is then highly unlikely that people use distance and angle

measurements in their mental maps. but rather use other more general principles

to organize their conception of space. The manner in which humans internally

represent the space they inhabit and how they locate their own position in their

internal map is a fascinating subject. Although far more sophisticated than any-

thing robots can do now. some observations taken from humans can point to

a compact and useable representation for robots. Kevin Lynch. in his oft-cited

work Image of the City Lyn60 . hypothesizes that people tend to represent cities

in terms of the basic building blocks:

* paths - t'.ese lead from place to place.

* edges - linear elements. not paths. which serve as boundaries or barriers.

* districts - larger areas unified by some similar attribut, . style.

• nodes - serve as origins and destinations of any journey: one can enter and

apprehend a node in its entirety.
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9 landmarks - something which one cannot enter. but which is distinctive or

recognizable from the outside. sometimes merely by virtue of its visibility

from many locations.

Although this is an interestin- breakdown into building blocks for entire cities.

some of these blocks are not necessary when we scale down to the task of represent-

ing a sinzle floor of an office building. In particular. districts are unnecessary. and

edges are redundant. since they exactly coincide with walls which define rooms.

which I will assume people use as nodes or --locations" within buildings.

5.2.2 Connecting Locations

Lynch suggests that in the internal mental map. locations are connected by paths

which are distinctive or recognizable in some way. but leaves it to the reader

to infer what exactly is meant by --distinctive". It is reasonable to assume that

landmarks play a part in this distinctiveness measure. The distinctiveness of a

path is sufficient to navigate between two places: if a person knows that a yellow

brick road is the distinguishing characteristic of the path to Oz. he need not

know the direction it leads in order to arrive there. Kuipers. following Lvnch-

building block model. has hypothesized a mental model which makes use of the

cues received while actually on a path to direct its own continuation: this model

tries to account for the phenomenon of a person being able to get to a destination.

but not being able to explain how to get there unless he is actually en route

Kul*, . In some of his later work on mapping with Byun. Kuipers characterizes

paths by the robot behavior utilized in order to follow them KBx7. KBS'b. as

does ConnelI ConS" .

It is clear that landmark recotnition plays an important part in location identi-

fication and path following in humans: this does not necesarily implv visual ones.

In the absence of visual landmarks, other unmistakable landmarks are utilized. In

a study of how blind people navigate around the MIT campus KG73 . the blind
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people reported that the most distinctive place for them was Lobby 7 because of

the echos of the large dome. and that they use this place as a reference to get

to other places. One person reported that he always goes to Lobby 7 and then

makes his way to his destination from memory, using recognizable landmarks such

as stairs. large rooms. or water fountains. These latter objects are recognized by

sound and air pressure: the blind people described the ability to localize using

,mell and heat sensing as well. Subsequently they suggested that maps for blind

people include such features. Many of the blind people also mentioned how they

will go out of their way to avoid crossing areas devoid of clues and landmarks.

such as parking lots and fields. so as not to get disoriented.

Another approach to connecting locations is by approximate distance and rel-

ative direction. much like in a traditional map. People clearly do use this infor-

,nation to some extent. since the directions "'Turn left at the light and ,- i(or thre

blocks" would be meaningless unless this were true. However. this representation
is limited in its usefulness, as nearly all studies of cognitive mapping have indi-

cated that people recognize and utilize right angles very well. but have trouble

comprehending angles that are not discrete multiples of 90: when encouintpring

such an angle. people will tend to go through all sorts of mental c,,,tort ions to(

try to represent it as a right angle at any cost. Thi- explains why everyone get,

disoriented at the 5-sided Boston Common, Lvn60 . and why blind people avoid

any intersection that is not 90- KG73. Therefore, it is unlikely that people use

very accurate orientational information in their mental maps.

The way blind people get from place to place suggests that they know the

<patial relationships between adjacent locations, but they do riot ak-tract these

spatial relationships upward-, to place entire sequences of places into a zlobal

framework of spatial relationship.,. For instance, a blind person wil use the infor-

mation -turn left at the water fountain and go until You get to the tairs-. but he

will not realize, after walking in a loop. that he is very close to his starting point.
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and will not invent shortcuts that would take advantage of the nearness of dis-

tinct locations. Sighted people do have this ability to varying extents. However.

as it is a fact that blind people do navigate, it would seem that the information

total orderinz of spatial relationships between nodes on a map is helpful but not

necessary to the manner in which people naviliate.

Given that people do have a sense of relative positioning of adjacent places.

though often inaccurate, and given that people can reach places whose distance

and angular bearing from their present location is unknown. it is probable that

they use path distinctiveness information along with distance and orientation

information on a very local level, connecting only a few nodes at a time. in order

to connect places in their mental maps.

5.2.3 How Distance and Direction Information is Stored

St idies on cognitive mapping in children and adults have tided interetin4 hy-

potheses on the manner in which people mentally store locational information.

In one study. people were walked around a large room which contained everal

distinctive objects. and were then put in a corner of the rooni ehind a screen and

were asked to point to the position of objects which they had just seen. The result

was that most people seemed to believe that the large objects. which were not

symmetrically located in the room. were directlv across from each other along the

room s axes HMP76 . Apparently the adults tended to create symmetry where in

actuality there was none. and it was suggested that they do this in order to sacri-

fice "absolute accuracy for the sake of cognitive economy." It was noted that this

tendency to create symmetry increased with age. It was also observed that most

of the children could only locate objects by seeing them. pointing in fairly random

directions that had no relation to the objects' actual locations when they were

not visible. These results suggest that the ability to store location information

and storage efficiency develop with age.
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In the same study, people were placed in a particular location in the room and

were asked to imagine that they were standing in a different location in the same

room. They were then asked to point to where particular objects would be. were

the subject actually at the imagined location. It was noted that in their responses.

people tended to make a quick decision about what direction the object was in. and

proceeded to fine tune the angle of the original guess to their final answer. Pick

suggested that this was an indication that people have two encodings for objec'

locations, general direction at the top level, and then angle. It is unfortunate that

this study did not result in any insights into distance encoding as well.

5.3 A New Approach to Mapping

In any case. the results of these and other studies seem to suggest that the maps

that people make and use are at an extremely gross scale. rife with inaccuracies.

and yet well suited to the purpose of navigation. It is my goal to appiv the

hypothetical principles of human navigation to robot navigation, hopefully addina

sorne insights and robustness in the process.

the zoal at hand is to build a representation and a control strategy which

would enable a robot to build and utilize a map of a floor of an office building.

An office environment is a much simpler place than a city. and the representation of

only nodes and paths which connect them is sufficient to understand the structure

of an entire floor. In the current plan. it is the rooms which serve as nodes. and

I have outlined in chapter 3 a means for identifying them. The choice of nodes

being defined at the scale of rooms is optimal for the following reasons:

* Rooms are clearly topologically invariant, insensitive to dynamic environ-

riients. and are the smallest topological unit for which this is so. and

* People use rooms as node, iin the Lynchian sensel. and it is desirable to

have a robot's map directly correspond to those used by people for several
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reasons. not the least of which is that we hope to build robots that act like

people.

In Lynch's scheme. nodes are connected by paths. and in the context of an

office building where the nodes are defined as rooms. the paths will be defined as

the doors which connect them. There already exists a behavior in the subsumption

domain suited for the task of identifying doors. discussed in the previous chapter.

If we have extremely accurate sensing capabilities and can count on the repro-

ducibilitv of readings from a single location, then localization can be done using

landmarks in a probabilistic fashion. One can think of the interpretation of the

data from all of the sensors as a sort of landmark: hopefully the interpretation will

point to only one possible locality for the robot MorS8. KB87. KBS0b . But in the

presence of dynamic objects this method will not work. and more conventional

landmarks are essential for localization. However. visual landmark recognition

identification is verv difficult since it requires the ability to recognize 3D objects

from their 2D representation. an entirely separate problem which is beyond the

scope of this thesis.

Since the robot's visual processing capabilities are limited, it mnay be useful
to artificially designate a particular room as "home" by placing in it some object

that the robot can recognize unequivocally. Without any landmark recognition

capabilities at all. it would be difficult if not impossible for a robot to recognize

that a corridor had gone around the building and led back to the same place.

Some of the observations of human navigation presented here serve as justi-

fication for the work presented in the next chapter. which will discuss the map

building and referencing strategy the robot will use given the roomfinding and

doorfinding modules discussed in the previous chapters.



Chapter 6

Building and Referencing the

Map

This chapter builds upon the work presented up until this point by explaining

how the techniques for finding doors and rooms presented in the first few chapters

might be made to work in conjunction to produce useable maps. Some of the psy-

chological observations and computational complexity issues raised in the previous

chapter are brought in to serve as justification for several of the representation

choices that were made along the way.

6.1 Using the Doorfinder and Roomfinder to

Determine Location Change

Let us first start with the simplifying assumption that the roomfinding module

returns correct information, and see how with this alone, a node map of the

room connectivity of a simple environment can be built. Other work in mapping

has made use of the concept of --distinctiveness of sensory input" to individuate

locations KB88b; the advantages of defining different rooms as distinct locations

or "nodes" are:

71
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* Location becomes a discrete. not continuou,. concept. Anywhere within a

single room is defined to be the same location, and one changes location

only when one passes through a door. Given a mechanirn- which accurately

recognizes doors. the problem of when one has changed location becomes

easy.

* The concept of different rooms being defined as distinct locations corre-

sponds to the manner in which people localize themselves within buildings

- thus. a robot which navigates like people.

The doorfinder. which is really only a vertical line finder, is only part of the

mechanism which determines location change. It is as likely to home in on two

chairs standing near each other as it is to find an actual door. The way out of this

bind is to utilize the roomfinder to verify the room change once the doorfinder

has identified and carried the robot to a potential door.

Consider the room layout shown in figure 6.1. This is a representatiun of an

actual sequence of offices in the MIT Al lab. Suppose the doorfinder identifies a

spurious door somewhere within the room. The doorfinder then carries the robot

up to the candidate door. and the roomfinder is queried about the size of the room

and the robot's location within it. The robot subsequently moves through the two

edges and the roomfinder is again queried. In the case of an actual room change.

the robot's position and orientation within the room changes ,ignificantlv: if the

position of the robot with respect to the room has not changed, then the two

edges through which the robot moved did not describe a door. In the former case

the robot starts by facing a nearby wall and end, with a wail directly behind it

facing open space. This information allows the robot to identify a room change

even when the exited and entered rnins have the same diiien'i,)ns.

I'MMM
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Figure 6.1: The layout of three rooms in the Al lab.

i ,t

.. L__ +,

Figure 6.2: Different positions of doors w'ith respect to the room.
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6.2 Building the Map

In building and using a map. the robot must be able to distinguish between two

rooms that may look the same even when they are not. In the current conception.

a room is distinctive not only by its dimensions. but also by the paths taken to

get there. where the paths in this case are the doors leading in and out of it.

Let us divide aU doors into three gross categories: those that are positioned

toward the left side of the containing wall when one is facing into the room with

the door behind one. those which are towards the right, and those which are in

the middle. This allows the roomfinder and doorfinder working in conjunction to

distinguish between 6 non-isomorphic room door configurations for a non-square

roonis. and .; room door configurations for square roo:ns Iee figure 6-.2,. EverY

time a door is traversed, two nodes connected by a door door path are created.

For example. upon passing from room 1 to room 2 in figure 6.2. the mapping

mlodule would use the information provided by the roonifinder and dootfinder to

construct the node pair pictured in the top part of figure 6.3.

The proposed mapping algorithm works as follows: upon startup.

* Initialize the map by entering a node with the current room's dimensions.

* For every door found. construct a node pair as described. If the node pair is

consistent with one already leading off from the current room. then we are

in previously charted territory and have just entered into a known room. If

not, we have just found a new door and room. Enter this new node pair

into the connectivity map.

This algorithm creates the connectivity map pictured in the bottom part of figure

6.3.

This statement of the problem corresponds almost directly to the alert con-

muter problem. since for that problem. all location, are di.tinlguishable. the 1-1

adjacencies are easily available, and the problem is the directional ordering of
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I~ I,

1 2

Figure 6.3: The connectivity map built from the configuration of rooms in figure
6.1.

these adjacencies. In this problem, though location is not uniquely distinguishable

(since there may be several rooms with the same dimensions and distinguishing

doors). the possible current location is completely constrained by where the robot

was one step before. Furthermore, we are interested in the adjacency graph. not

in the total ordering of the nodes in the graph. The disregard for spatial ordering

here is inspired by the way in which people are observed to store the relation-hips

between their map nodes, and significantly simplifies the representation. Thus.

the problem is already solved.

However. the mapping algorithm as it stands cannot handle any loops in the

environment - for example, the same two rooms connected by two different doors

would be considered to be different node pairs and would cause an incorrect dou-

bling of the connectivity map. It also incorrectly handles the case where a single

room contains two doors which look exactly the same from both sides of the doors:

in this case the two doors would be identified as one and the same. and would

cause an incorrect folding over of the map. Both cases are shown in figure 6.4.

However, if the environment does not contain loops or isomorphic node pairs.

then absolutely no odometry information or trajectory integration is needed to

successfully build the node map.

If the environment does contain loops or isomorphic node pairs. then a simple

on-board compass is sufficient to identify the problematic cases. If we do have a
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1 2 

1 2 3 1 -,

Figure 6.4: The connectivity map built from problematic situations. In the top
figure there is a loop. i.e.. two paths connecting the same two rooms. In the
bottom figure there are two doors in the same room which are indistinguishable.

compass. then there is another four-valued distinguishing characteristic of doors.

bringing the number of non-isomorphic room, door configurations for a non-square

rooms to 6 , 4 = 24. and half that number for square rooms. This is enough

information to correctly disambiguate the similar looking doors in figure 6.4. and

most other cases as well.

In addition, we will allow the robot to recognize a separate entity called -'cor-

ridors- by reference to a predefined aspect ratio of length to width. and when

the robot enters one of these. the path that it chooses will have either a 90: or

a 270c angle associated with it. This directional information will be necessary in

order to correctly identify adjacent geometrically identical rooms coming off a long
corridor, even if the starting room is known. However. introducing this concept

presents a problem. since most rooms off the corridor are likely to be of the same

dimensions. introducing isomorpL,- node pairs leading off the main corridor node

in the graph. Distinguishing between these nodes will most likely require a notion

of node ordering, which I have not discussed. and landmark recognition. not likely
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to be implemented in the foreseeable future.

6.3 Using the Map

Once the map has been built, how can the robot use it to navigate? There is a

problem with startup, if the robot already has the adjacency map and is required

to deduce where it is, given no information of previous movement. Depending on

the similarity of different parts of the adjacency graph, the robot may or may not

be able to deduce its location. If the graph is non-trivially auto-isomorphic. the

robot can never narrow down the set of its possible locations to a single location.

If it is not auto-isomorphic, then it is possible for it to localize itself given that

the robot has enough memory to remember all the locations it has ever been. For

instance, imagine a graph consisting of only two distinguishable room types..\

and B. which are connected in a circular list of 99 As. I B. then 100 VA' and I

B. Though this gTaph is not auto-isomorphic. if the robot could only remember

at most 99 steps. it could not distinguish between the two sections of the graph.

Given that the robot knows what room it is in. then it cannot get lost by

transitioning from room to room in its adjacency graph. It can alzo riavigate

between any two given rooms in a directed fashion by using the information in

the graph as follows: first. it finds a node path connecting the two nodes in

question. Since the edges between nodes contain information about the position

of the connecting doors with respect to the connected rooms. the -obot can use

this information to constrain the position of the desired door in the room to at

most 2 for rectangular rooms and 4 for square rooms: with directional information

i NSEW per door. as previously explained) and a compass. this reduces down to

only 1 possible door location for both rectangular and square rooms. We have

already seen that the robot can wake up in a room. pick a particular diagonal and

head towards it; in this case, it would pick where it thought the door should be.
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head towards it. and when the robot gets close enough for the door t, be , -iblo

the doorfinder would fire and bring the robot through the door, where !he ,)room

traversing process would start again, until the de-ired room wa, reache.i.

6.4 Foreseeable Problems

The previous analysis of the feasibility of buildinz and referencing a 1 i!n!e ad-

jacency map to navigate was done under the assumption that the rooinfinder is

100 - accurate. The problem is complicated considerably by the fact that it i-

far less reliable than this. and brinzs the real problem clo-er to the "nivopic coiu-

tnuter'" problem than the 'alert commuter" problem. Only implementin,,g thee

ideas will make evident how close we can come to the ideal.

One factor which prevents the extensive testing of the e ideas is 'h,, -:eed

at which the roomfinder runs. which is about m, minutes per rooml ;car. ulis-

expected to change when the processing is moved onto a digital siznal pr,,-ina

board which has been able to perform single line convolutions arid MaTchiu¢ at a

speed of 400 per second in tests. bringing the time to proce , a corp,-iie r,)(,,

image to about one second.
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Conclusion

This chapter will discuss briefly the shortcomings of the methods presented in this

thesis. and will try to suggest areas of improvement. Finall. an overview ot 1 her

approaches to similar problems will be presented. and how the work presented here

tried to address the issues raied in these related attempts t .oIvo th-e di--icfit

problem of robot navigation.

7.0.1 Evaluation of Results and Future Directions of Re-

search

The experiments carried out for this work were accurate not much more than half

the time. In all of the experiments performed. it was the matchina ,tage that

proved to be the major cause of failure. Since all of the modules discussed depend

on accurate results from this step. a great improvement in overall reliability would

result from improving the reliability of this single ,tage. However. any .Y-teiii

which is dependent on 1007 reliability from the output of any other procedure is

doomed to failure. In the absence of 100'i reliabilitv. the overall 11st ol ih,,ld

still behave in a reasonable way.

One factor detracting from the overall robustness is that the system does not

try solve the problem of sensor noise at all. nor is there any form o, redundant

79
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sensing. This has clearly affected the results of all the modules. A promirL

direction would appear to be building a framework which would address bot h ,he~e

issues. Moravec MorAS. has done work in the area of probability integration iin

certainty grids, and others have used redundant sensing and Kalman filteri:,. ',

update internal world models and correct for drift in odometry Cro89 and 'o

integrate data from different sensors DWX7.

However. despite the less than perfect outputs from the modules. the robot ,a.

able To perform a simple task whith did not depend on the absolute reliability of

the modules. namely. recognizina corners and traversinz a room along its diaonail.

The approach presented here tries to tackle the problem of topological [fapping

in a way which might be characterized as more 'qualitative" than -quantitative'.

and as such, it does not fail more spectacularly than any other project of it- kind

to date.

The three modules which I have discussed, the doorfinder. the roomfinde-. : r:d

the mapper. are planned to '6e implemented with Brooks' subsumption arcliitec-

ture. though they are suitable for integration into any control model invixil.g

independent agents. The [napping module is planned to be a passive rilodule.

mereiv an "observer" of the path taken by the robot due to other causes ra: -

dom wandering, object tracking, and so on. No attempt is made by the m,,dule

to actually direct the robot to :,nnknown territory, although in the future it ,iII

be able to issue commands to the motor control. causing the robot to actually

explore its environment in a directed fahion.

7.1 Related Work

Robot navigation and mapping has been a much w,,rked on area in the pa.-t ,,rid

still remains elusively difficult. given an unstructured environment. Followiril'

an overview of some of the important work done in the field from its inception,
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and I try to pinpoint way in which the approaches succeeded tnd or fell short of

their goals, and what conclusions can be drawn from them.

7.1.1 Obstacle Avoidance

Moravec in 1qO attacked the problem of navigation by concentrating on visual

obstacle avoidance Mort0. After an initial stereo calibration stage. his robot

was able to plan a path to a given destination , where the destination was given as

displacement relative to the robot's starting position 1 through a cluttered environ-

ment. picking its way through objects which it visually identified and entered into

an internal grid map after every 1 meter iteration of its basic observe plan move

loop. 'stpreo matching was performed by picking intere-ting poins in ,,ne image

and finding their correspondence in the other, As a result. obiect, which did

not !ive rise to interesting points were not eeri and sonetimes tle rO)ot Wculd

plan a path through them. The robot would deduce its own I,,tiJiI troiii the

iovement of the objects around it. avoiding the problem of cumulativ e err,)r. A

major problem for the robot was that the execution time of the miin loop wa.-

approximately 1.7 minute,. which translated into a speed of 3-7 neters per hur.

.t this :{pee4t. the rover cannot be thought of as perfurming "real-time" _h-tacle

avoidance. However. the approach taken for stereo matching wa, quiite rohist.

due to the redundancy of information given by stereo matching between nine. not

two. images. This gave rise to = 36 data points per feature. which tend to

cluster around the correct depth value even given several incorrect matches. The

,uccess of this approach ,upports the arzument that the best hope for correct

interpretation of real world data lies in the direction of redundant information

processing techniques.

Another project in visual navigation. lobi at Stanford. was able to move

down a hallway using stereo v .on by mathing vertical edges between successive
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images. and, assuming that the vertical edges lay alonz wailk, built a model of

the corridor TK87'. It was also able to navivate throuzh tree -pace by assumin-

that the triangle formed by the two camnera! and a correct match was free. and

moving through this triangle.

7.1.2 Map Based Navigation

Other approaches have concentrated on localization of the robot by correiatin,

information obtained through -sensors to a map provided to the robot for this

purpose - this is appropriately called "'map based' navigation. Here. the robot

is required to relate its position to an absolute reference frame outside itself, and

therefore has a more sophisticated en,,e of place than the Moravec rover. In order

for iiap-based navigation methods tu work correctly in the presence of unforeseen

obstacles, the robot must be able to perceive obstacles in real time a, well as

perform i,_,calization. and must be able to combine long term and ihort term ga 1,

into a unified plan (for instance. !et to the end of a hall while _uina around a

person cominz from the opposite direction I.

Huahe, has successfully denmonstrated the ability to perforii niap based ,

countrv navigation with the ALV. while av,,iding obstacles not present in the inap.

It uses a laser range scanner to build a local cartesian elevation map and fuses the

maps from successive locations to deduce the relative change of position in all six

degrees of freedom. Two competing "meta" behaviors, a imap based planner and

a reflexive planner. together determined the final trajectory of the vehicle.

Gilbreath and Everett 'GE.s describe a surveillance robot which addresses

the problem of navigation in a dyvnaimic office environment. It has an initial static

environment map. and plans a path using this. During execution it u.,e> ultrasonic

range data to update a secondary local grid of occupied locations, and miay alter its

path to avoid unexpected obstacle, whose existence seerii too certain to ignore.

Upon completion of a path trajectory the secondary map is forzotten, as it is
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assumed that it contained only dynamic objects. Localization is done by dead

reckoning.

7.1.3 Mapping the Environment

Chatila and Laumond Cha85b CL85 have worked on the problem of building a

map from sensor information by trying to fit tozether polygons of observed free

space into a consistent two dimensional map. This map consists of three levels

- a geometric level, which is concerned with actual 2D relationships between all

objects encountered i which for siniplicitV are represented as polygons 1. a topolog-

ical level, which groups the free space into rooms, and a semantic level. in which

certain spaces are treated as paths to other spaces, such as corridors or doors.

Their robot. Hilare. uses laser range scanners to build the lowest level roap. To

fuse information taken from different locations it uses an approach. similar to

Brooks Bro-.5 , of associating position uncertainties with every ensur readiiig.

and when identifying a previously seen location, projecting the small uncertainty

bounds associated with the current reading backwards to previous !tei. herehy

tightening the bounds on their associated uncertainties such that the map c,)a-

lesces into a self-consistent model. The graph of free space resulting from this

stage is then heuristically grouped into connected component:- and topolosicailY

labelled. Using this method. Hilare is reported to have successfully niapped small

regions consisting of several rooms. However. the approach is engineered to work

in a static environment and it is not clear how to extend this method to cope with

a dynamic one.

Bolles. Baker and Marimont have demonstrated an algorithm to construct a

3D map of free space visually by using a single noving catnera which maintains

a fixed orientation with respect to the direction of motion BBM87 . The succes-

sive images from a camera moving at constant velocity sweep out an image cube

consisting of a series of epipolar planes, where epipolar planes are defined by the
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vector describing the motion of the camera's optical center and a feature in the

world, analogous to the stereo case. The motion of a feature across a series of

epipolar planes gives the distance of the feature from the camera, and usin4 the

fact that if point A is visible to a camera moving from point X to Y. then the

triangle AXY describes free space. a 3D polygonal analysis of the observed scene

can by inferred.

Ayache and Faugeras have worked on another attempt to infer the 3D structure

of a scene using stereo vision. This approach uses the matching of line segments

in the two images, using an epipolar analysis with :3 cameras instead of 2 in order

to disambiguate matches in both the vertical and horizontal directions FauS .

AFS . At present the mobility of the robot is utilized mainly to collect successive

sequences of images: the results of actual map building and navigation using this

information have not been reported on.

7.2 Contribution of this Thesis

As can be seen. most work in mapping has been concerned with building an accu-

rate 2 or 3D map of the environment. where objects are reprented a, polvygon-

in order to simplify path planning. This approach generally requires sonie amount

of trajectory integration, and cumulative errors drastically affect the accuracy of

the map. In addition, obsessive concern for precise geometric modelling Zenerally

requires a static unchanging environment: changes in the actual world. such as

moving a chair to the middle of a room. will confuse a robot which happens to be

using the previous position of the chair to do localization.

The approach I have taken to the problem differs fundamentally from those

presented here and has the following advantage,:

* In indoor environments the natural building blocks are rooms, and I have

suggested a method of map building and position referencing using these

• , ni i i i ili n IlDn ili
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blocks as the smallest topological unit. much as people do.

* The sensors developed for this purpose are matched exactly to the inap-

building task. In addition. they use Dassive sensing and require minimal

calibration and processing. and are insensitive to dynamic changes in the

environment.

* No attempt is made to acquire information unnecessary to the task at hand.

The 3D structure of a room being traversed in order to get to the room

three doors down is unimportant: however, the gross structure of the room

along with the location of the doors is.

* The graph representation contain, information sufficient to perform :iavisa-

tion between rooms. mt not within a single room. Navization inside rL.-i

should be done on the HY. since the location of objects within them are likely

t)change - thus whY waste space remembering them.'

What I have tried to do with the work in this thesis is to try to break out of the

mold defined by previous work by looking at the way people navigate. and tryinz

to apply some of the observations to robots.
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